
Preliminary Comments

Fabwelt
Nov 14th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
TCK-01 : Centralization Risk

TCK-02 : Unlocked Compiler Version

TCK-03 : Variable can be Declared as Constant

TCK-04 : Lack of Event Emissions for Significant Transactions

TCK-05 : Redundant Code

TCK-06 : Unused Local Variable

TCK-07 : Check Allowance Before Transfer

TCK-08 : Missing Error Messages

Appendix

Disclaimer

About

Fabwelt Preliminary Comments

Summary
This report has been prepared for Fabwelt to discover issues and vulnerabilities in the source code of the

Fabwelt project as well as any contract dependencies that were not part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Fabwelt Preliminary Comments

Overview

Project Summary

Project Name Fabwelt

Platform polygon

Language Solidity

Codebase https://polygonscan.com/token/0x23e8b6a3f6891254988b84da3738d2bfe5e703b9

Commit

Audit Summary

Delivery Date Nov 14, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 1 1 0 0 0 0

Medium 0 0 0 0 0 0

Minor 0 0 0 0 0 0

Informational 7 7 0 0 0 0

Discussion 0 0 0 0 0 0

Fabwelt Preliminary Comments

https://polygonscan.com/token/0x23e8b6a3f6891254988b84da3738d2bfe5e703b9

Audit Scope

ID File SHA256 Checksum

TCK fabweitToken.sol 3137dcd9f3a3bf7da610f952b2c3b3dada336c3d2814e98b9301591fcd422273

Fabwelt Preliminary Comments

Review Notes

Overview

Fabwelt is a company whose goal is to incorporate blockchain technology such as NFTs and tokens into a

variety of games that it develops. The current contract is the implementation of the Fabwelt Token (WELT),

which is based on Reflect. The main differences with Reflect are that in addition to the reflect fee, there are

two additional types of fees and the owner has the ability to decide all fee rates.

Privileged Functions

In the contracts Ownable and FabweltToken , the role _owner has the authority over the following

functions:

Ownable.renounceOwnership() , which renounces the owner role and disables all functions with the

onlyOwner modifier;

Ownable.transferOwnership() , which transfers the owner role to another address;

FabweltToken.excludeAccount() , which excludes an address's tokens for rate calculations;

FabweltToken.includeAccount() , which includes an excluded address's tokens for rate

calculations;

FabweltToken.setAsCharityAccount() , which sets the address for FeeAddress ;

FabweltToken.updateFee() , which decides the fees for transfers.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to

the community. Any plan to invoke the aforementioned functions should be also considered to move to the

execution queue of the Timelock contract.

Fabwelt Preliminary Comments

Findings

ID Title Category Severity Status

TCK-01 Centralization Risk Centralization / Privilege Major Pending

TCK-02 Unlocked Compiler Version Language Specific Informational Pending

TCK-03 Variable can be Declared as Constant Gas Optimization Informational Pending

TCK-04
Lack of Event Emissions for Significant
Transactions

Coding Style Informational Pending

TCK-05 Redundant Code
Gas Optimization, Coding
Style

Informational Pending

TCK-06 Unused Local Variable Gas Optimization Informational Pending

TCK-07 Check Allowance Before Transfer Gas Optimization Informational Pending

TCK-08 Missing Error Messages Coding Style Informational Pending

Fabwelt Preliminary Comments

8
Total Issues

Critical 0 (0.00%)

Major 1 (12.50%)

Medium 0 (0.00%)

Minor 0 (0.00%)

Informational 7 (87.50%)

Discussion 0 (0.00%)

TCK-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Major
projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 432, 441, 598,
607, 620, 624

Pending

Description

In the contracts Ownable and FabweltToken , the role _owner has the authority over the following

functions:

Ownable.renounceOwnership() , which renounces the owner role and disables all functions with the

onlyOwner modifier;

Ownable.transferOwnership() , which transfers the owner role to another address;

FabweltToken.excludeAccount() , which excludes an address's tokens for rate calculations;

FabweltToken.includeAccount() , which includes an excluded address's tokens for rate

calculations;

FabweltToken.setAsCharityAccount() , which sets the address for FeeAddress ;

FabweltToken.updateFee() , which decides the fees for transfers.

For the contract deployed at 0x23e8b6a3f6891254988b84da3738d2bfe5e703b9 on Polygon, the _owner

is 0x63401aac2469bfe676d134571defe64839c35a61, which is an EOA (externally owned account).

Any compromise to the _owner account may allow the hacker to take advantage of this and disrupt how

the token should operate.

Recommendation

We advise the client to carefully manage the _owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Here are some feasible suggestions that would also mitigate this risk in the short-term and long-term:

A time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Fabwelt Preliminary Comments

https://polygonscan.com/address/0x23e8b6a3f6891254988b84da3738d2bfe5e703b9
https://polygonscan.com/address/0x63401aac2469bfe676d134571defe64839c35a61

TCK-02 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 11 Pending

Description

The contract has an unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

ambiguity when debugging as compiler-specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.8.2 the contract should contain the following line:

pragma solidity 0.8.2;pragma solidity 0.8.2;

Fabwelt Preliminary Comments

TCK-03 | Variable can be Declared as Constant

Category Severity Location Status

Gas Optimization Informational projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 465, 467 Pending

Description

The values of FabweltToken._GRANULARITY and FabweltToken._MAX are never changed after assignment,

so they can be declared as constant . A big advantage of constant variables is that reading them is

significantly cheaper than reading from regular state variables.

Recommendation

We recommend using constant state variables for FabweltToken._GRANULARITY and FabweltToken._MAX

in order to save gas.

Fabwelt Preliminary Comments

TCK-04 | Lack of Event Emissions for Significant Transactions

Category Severity Location Status

Coding
Style

Informational
projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 572, 598, 607, 62
0, 624

Pending

Description

The following functions update crucial state variables. Events should be emitted to log these updates.

FabweltToken.deliver()

FabweltToken.excludeAccount()

FabweltToken.includeAccount()

FabweltToken.setAsCharityAccount()

FabweltToken.updateFee()

Recommendation

We advise adding events for sensitive actions in the aforementioned functions and emitting them in the

corresponding functions.

Fabwelt Preliminary Comments

TCK-05 | Redundant Code

Category Severity Location Status

Gas Optimization,
Coding Style

Informational
projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 653,
664~665, 745, 832

Pending

Description

In the function FabweltToken._transfer() , takeFee is set to false if recipient is excluded:

649649 ifif ((FeeAddress FeeAddress ==== sender sender |||| FeeAddress FeeAddress ==== recipient recipient ||||
_isExcluded_isExcluded[[recipientrecipient]])) {{
650650 takeFee takeFee == falsefalse;;
651651 }}
652652
653653 ifif ((StakeAddress StakeAddress ==== sender sender |||| StakeAddress StakeAddress ==== recipient recipient ||||
_isExcluded_isExcluded[[recipientrecipient]])) {{
654654 takeFee takeFee == falsefalse;;
655655 }}

Checking _isExcluded[recipient] in the second if statement is unnecessary because it has been

checked in the first if statement.

In the function FabweltToken._transfer() , the condition !_isExcluded[sender] &&

!_isExcluded[recipient] is unnecessary because FabweltToken._transferStandard() will be executed

in the else statement:

664664 elseelse ifif ((!!_isExcluded_isExcluded[[sendersender]] &&&& !!_isExcluded_isExcluded[[recipientrecipient]])) {{
665665 _transferStandard_transferStandard((sendersender,, recipient recipient,, amount amount));;
666666 }}

The function FabweltToken._reflectFee() contains the following line:

745745 _tTotal _tTotal == _tTotal _tTotal;;

However, this does not bring any changes.

The function FabweltToken._getTaxFee() is a private function but never used within the contract.

Recommendation

Fabwelt Preliminary Comments

We recommend removing the aforementioned redundant code or adding relevant logic if they are designed

for some purpose.

Fabwelt Preliminary Comments

TCK-06 | Unused Local Variable

Category Severity Location Status

Gas
Optimization

Informational
projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 676, 691, 708
, 724

Pending

Description

In the contract FabweltToken , the functions _transferStandard() , _transferToExcluded() ,

_transferFromExcluded() , and _transferBothExcluded() all contain the following line:

 uint256uint256 currentRate currentRate == _getRate_getRate(());;

However, the local variable currentRate is unused in the above mentioned functions.

Recommendation

We recommend implementing a use case or removing the variable.

Fabwelt Preliminary Comments

TCK-07 | Check Allowance Before Transfer

Category Severity Location Status

Gas Optimization Informational projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 541~542 Pending

Description

In the function FabweltToken.transferFrom() , the function transfers tokens before checking if the

message sender has enough of an allowance.

541541 _transfer_transfer((sendersender,, recipient recipient,, amount amount));;
542542 _approve_approve((sendersender,, _msgSender_msgSender(()),, _allowances _allowances[[sendersender]][[_msgSender_msgSender(())]]..subsub((amountamount,,
"TOKEN20: transfer amount exceeds allowance""TOKEN20: transfer amount exceeds allowance"))));;

It would be better to validate the allowance first to reduce gas costs in case it reverts.

Recommendation

We recommend checking there is sufficient allowance before initiating a transfer.

Fabwelt Preliminary Comments

TCK-08 | Missing Error Messages

Category Severity Location Status

Coding Style Informational projects/fabwelt/contracts/fabweitToken.sol (cd81a41): 625 Pending

Description

The require statement can be used to check for conditions and throw an exception if the condition is not

met. It is better to provide a string message containing details about the error that will be passed back to

the caller.

Recommendation

We advise refactoring the linked codes as below:

625625 requirerequire((_txFee _txFee << 100100 &&&& _stakeFee _stakeFee << 100100 &&&& _charityFee _charityFee << 100100,, "Invalid fee"Invalid fee
rates"rates"));;

Fabwelt Preliminary Comments

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Fabwelt Preliminary Comments

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Fabwelt Preliminary Comments

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Fabwelt Preliminary Comments

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Fabwelt Preliminary Comments

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Fabwelt Preliminary Comments

